Cloud Engineer
Master Kubernetes design interviews with our AI-powered real-time coach. Get instant guidance on cluster architecture, workload deployment, scaling strategies, and cloud-native patterns that demonstrate your Kubernetes expertise.
Kubernetes Design Interview Topics
Our AI coach helps you master these critical Kubernetes design concepts for cloud engineering interviews
Cluster Architecture
Design production-ready Kubernetes clusters including control plane HA, node configuration, networking models, and security boundaries across multiple environments.
Workload Management
Design deployment strategies using Deployments, StatefulSets, DaemonSets, and Jobs while implementing proper resource management and pod scheduling.
Networking & Service Mesh
Architect Kubernetes networking including Services, Ingress controllers, NetworkPolicies, and service mesh integration for microservices communication.
Storage & Data
Design persistent storage solutions using PVs, PVCs, StorageClasses, and CSI drivers while handling stateful workloads and data persistence patterns.
Scaling & Performance
Implement auto-scaling strategies using HPA, VPA, and cluster autoscaler while optimizing resource utilization and cost management.
Security & Governance
Design security-first Kubernetes deployments with RBAC, Pod Security Standards, network segmentation, and compliance frameworks.
Kubernetes Design Challenge
# Interviewer: "Design a Kubernetes architecture for an e-commerce platform that handles # 100k+ concurrent users, supports multiple regions, and ensures 99.9% uptime" # Requirements: # - Microservices architecture (web, API, database, cache, search) # - Auto-scaling based on traffic # - Multi-region deployment # - Data persistence and backup # - Security and monitoring
Approach: Design a comprehensive multi-tier Kubernetes architecture
Key Concepts: Microservices, scaling, persistence, networking, security
Architecture Design:
# 1. Namespace Organization apiVersion: v1 kind: Namespace metadata: name: ecommerce-prod labels: environment: production team: platform --- # 2. Web Frontend (React/Angular SPA) apiVersion: apps/v1 kind: Deployment metadata: name: web-frontend namespace: ecommerce-prod spec: replicas: 3 selector: matchLabels: app: web-frontend template: metadata: labels: app: web-frontend tier: frontend spec: containers: - name: web image: ecommerce/web-frontend:v1.2.3 ports: - containerPort: 80 resources: requests: memory: "256Mi" cpu: "100m" limits: memory: "512Mi" cpu: "500m" livenessProbe: httpGet: path: /health port: 80 initialDelaySeconds: 30 periodSeconds: 10 readinessProbe: httpGet: path: /ready port: 80 initialDelaySeconds: 5 periodSeconds: 5 --- # 3. API Gateway with Auto-scaling apiVersion: apps/v1 kind: Deployment metadata: name: api-gateway namespace: ecommerce-prod spec: replicas: 3 selector: matchLabels: app: api-gateway template: metadata: labels: app: api-gateway tier: api spec: containers: - name: gateway image: ecommerce/api-gateway:v2.1.0 ports: - containerPort: 8080 env: - name: DATABASE_URL valueFrom: secretKeyRef: name: db-credentials key: connection-string - name: REDIS_URL valueFrom: configMapKeyRef: name: cache-config key: redis-url resources: requests: memory: "512Mi" cpu: "250m" limits: memory: "1Gi" cpu: "1000m" --- # 4. Horizontal Pod Autoscaler for API apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: api-gateway-hpa namespace: ecommerce-prod spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: api-gateway minReplicas: 3 maxReplicas: 50 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 70 - type: Resource resource: name: memory target: type: Utilization averageUtilization: 80 behavior: scaleDown: stabilizationWindowSeconds: 300 policies: - type: Percent value: 10 periodSeconds: 60 scaleUp: stabilizationWindowSeconds: 60 policies: - type: Percent value: 100 periodSeconds: 15 --- # 5. Database (PostgreSQL with StatefulSet) apiVersion: apps/v1 kind: StatefulSet metadata: name: postgres-primary namespace: ecommerce-prod spec: serviceName: postgres-primary replicas: 1 selector: matchLabels: app: postgres-primary template: metadata: labels: app: postgres-primary tier: database spec: containers: - name: postgres image: postgres:14-alpine ports: - containerPort: 5432 env: - name: POSTGRES_DB value: ecommerce - name: POSTGRES_USER valueFrom: secretKeyRef: name: db-credentials key: username - name: POSTGRES_PASSWORD valueFrom: secretKeyRef: name: db-credentials key: password volumeMounts: - name: postgres-storage mountPath: /var/lib/postgresql/data - name: postgres-config mountPath: /etc/postgresql/postgresql.conf subPath: postgresql.conf resources: requests: memory: "2Gi" cpu: "1000m" limits: memory: "4Gi" cpu: "2000m" volumes: - name: postgres-config configMap: name: postgres-config volumeClaimTemplates: - metadata: name: postgres-storage spec: accessModes: ["ReadWriteOnce"] storageClassName: fast-ssd resources: requests: storage: 100Gi --- # 6. Redis Cache Cluster apiVersion: apps/v1 kind: Deployment metadata: name: redis-cache namespace: ecommerce-prod spec: replicas: 3 selector: matchLabels: app: redis-cache template: metadata: labels: app: redis-cache tier: cache spec: containers: - name: redis image: redis:7-alpine ports: - containerPort: 6379 command: - redis-server - /etc/redis/redis.conf volumeMounts: - name: redis-config mountPath: /etc/redis resources: requests: memory: "1Gi" cpu: "500m" limits: memory: "2Gi" cpu: "1000m" volumes: - name: redis-config configMap: name: redis-config --- # 7. Ingress with SSL and Load Balancing apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: ecommerce-ingress namespace: ecommerce-prod annotations: kubernetes.io/ingress.class: nginx cert-manager.io/cluster-issuer: letsencrypt-prod nginx.ingress.kubernetes.io/rate-limit: "100" nginx.ingress.kubernetes.io/ssl-redirect: "true" nginx.ingress.kubernetes.io/force-ssl-redirect: "true" spec: tls: - hosts: - api.ecommerce.com - www.ecommerce.com secretName: ecommerce-tls rules: - host: www.ecommerce.com http: paths: - path: / pathType: Prefix backend: service: name: web-frontend port: number: 80 - host: api.ecommerce.com http: paths: - path: / pathType: Prefix backend: service: name: api-gateway port: number: 8080 --- # 8. Network Policy for Security apiVersion: networking.k8s.io/v1 kind: NetworkPolicy metadata: name: ecommerce-network-policy namespace: ecommerce-prod spec: podSelector: {} policyTypes: - Ingress - Egress ingress: - from: - namespaceSelector: matchLabels: name: ingress-nginx ports: - protocol: TCP port: 80 - protocol: TCP port: 8080 - from: - podSelector: matchLabels: tier: api to: - podSelector: matchLabels: tier: database ports: - protocol: TCP port: 5432 egress: - to: [] ports: - protocol: TCP port: 53 - protocol: UDP port: 53 - to: - podSelector: matchLabels: tier: cache ports: - protocol: TCP port: 6379
Multi-Region Strategy:
# 9. Multi-Region Setup with GitOps # regions/us-west-2/kustomization.yaml apiVersion: kustomize.config.k8s.io/v1beta1 kind: Kustomization namespace: ecommerce-prod-us-west-2 resources: - ../../base patchesStrategicMerge: - region-specific-config.yaml configMapGenerator: - name: region-config literals: - region=us-west-2 - database_read_replica=postgres-read-us-west-2 - cdn_endpoint=https://cdn-usw2.ecommerce.com # 10. Monitoring and Observability apiVersion: v1 kind: ServiceMonitor metadata: name: ecommerce-metrics namespace: ecommerce-prod spec: selector: matchLabels: monitoring: enabled endpoints: - port: metrics interval: 30s path: /metrics
Key Design Decisions:
- Microservices: Separate deployments for frontend, API gateway, and services enable independent scaling and updates
- Auto-scaling: HPA with both CPU and memory metrics, plus custom scaling policies for traffic bursts
- Persistence: StatefulSet for database with persistent volumes and backup strategies
- Security: Network policies, RBAC, secrets management, and SSL termination
- High Availability: Multi-replica deployments, health checks, and graceful degradation
- Observability: Prometheus metrics, structured logging, and distributed tracing
ποΈ Architecture Design
Master Kubernetes cluster architecture, including control plane design, node configuration, networking models, and multi-region deployment strategies for production workloads.
π Scaling Strategies
Learn advanced auto-scaling techniques including HPA, VPA, cluster autoscaler configuration, and custom metrics-based scaling for optimal resource utilization.
π Security Best Practices
Implement comprehensive Kubernetes security including RBAC, Pod Security Standards, NetworkPolicies, secrets management, and compliance frameworks.
πΎ Data & Storage
Design robust storage solutions using persistent volumes, CSI drivers, backup strategies, and data replication patterns for stateful applications.
π Networking Mastery
Master Kubernetes networking including Services, Ingress, service mesh integration, and network policies for secure microservices communication.
π Monitoring & Observability
Implement comprehensive monitoring using Prometheus, Grafana, logging solutions, and distributed tracing for production Kubernetes environments.
Ready to Master Kubernetes Design?
Join cloud engineers who've used our AI coach to master Kubernetes architecture and land positions at top cloud-native companies.
Get Your Kubernetes AI CoachFree trial available β’ No credit card required β’ Start designing with confidence
Related Company Interview Guides
Prepare for more company-specific interviews with AI coaching